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ABSTRACT 

For every uncountable cardinal x define a metric space S to be x-superuniversal 
iff for every metric space U of cardinality x, every partial isometry into S from 
a subset of U of cardinality less than r can be extended to all of U. We prove 
that any such space must have cardinality at least 2 ~ = Za< x 2 a, and for each 
regular uncountable cardinal x, we construct a r-superuniversal metric space of 
cardinality 2'~, It is proved that there is a unique x-superuniversal metric space 
of cardinality x iff 2~ = x. Several decomposition theorems are also proved, 
e.g., every x-superuniversal space contains a family of 2~ disjoint K-sup- 
eruniversal subspaces. Finally, we consider some applications to more general 
topological spaces, to graph theory, and to category theary, and we conclude 
with a list of open problems. 

1. Introduction 

In  1910 Maurice Fr6chet [5, pp.  161-162] constructed a metric space o f  car- 

dinality 2K~ is universal with respect to all separable metric spaces, and in 

1925 Paul Urysohn  [16, 17] constructed a separable such universal space. Then in 

1940 Waclaw Sierpifiski [14] announced  and later proved 1-15] that  for  each 

cardinal x such that  2 ~ = x t there exists a metric space o f  cardinality x which is 

universal with respect to all metric spaces o f  cardinality x. Recently, Charles 

Joiner  [8]  simplified Urysohn ' s  construct ion (and found a new homogenei ty  

proper ty  connected with the space) and suggested that it be generalized to larger 

spaces. He also pointed out  that  Urysohn ' s  space has the proper ty  that  every 

isometry f rom a finite subset o f  the space into the space can be extended to an 

i sometry  f rom the entire space onto  itself and noted that  this proper ty  could be 

f We define 2 ~ ~ ]~<,, 2 x. 
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generalized. In fact, this had already been done for certain cardinals by Michael 

Morley and Robert Vaught [11] in 1962 in a much more general setting. They 

observed that metric spaces form a J6nsson class I-9, 10]. Bjarni J6nsson had 

proven general theorems about such classes which in the case of metric spaces 

yielded the existence and uniqueness of universal homogeneous metric spaces of 

cardinality x, where x is any uncountable regular cardinal satisfying 2~= x, and 

the existence of universal metric spaces of cardinality 2 ~ for all regular uncountable 

cardinals. 

However, when one deals with spaces which are strictly larger than the spaces 

with respect to which they are universal, the resulting homogeneity property is 

very weak; it allows us to extend isometries from "smal l"  subsets of the space in 

question into itself to isometries over larger subspaces, but it does not allow us to 

extend these to isometries over the entire space. For this reason, the present 

author was led to look upon properties of this type not as weak homogeneity 

properties but rather as strong universality properties. This turns out to be almost 

equivalent to Isidore Fleischer's notion of C injectivity [4]. 

Thus for any uncountable cardinal x, we define a metric space S to be 

tc-superuniversal iff, for every metric space Tof cardinality at most to, every isometry 
from some subset of T of cardinality less than tr into S can be extended to an 

isometry from all of Tinto S. We prove that every x-superuniversal metric space 

has cardinality at least 2 ~, and for regular uncountable cardinals we construct 

x-superuniversal metric spaces of just this cardinality. It is also proved that all 

x-superuniversal spaces of cardinality 2 ~ are isometric iff 2 ~ = x, and a variety 

of  decomposition characterization theorems are considered. A generalization to 

proper classes and its resulting category theoretical formulation is also treated and 

it is shown that while x-superuniversality can be extended to bounded metric 

spaces, it cannot be extended much further without leading to non-Hausdorff 

superuniversal spaces. Finally, an application to graph theory is presented. 

The outline of this paper is as follows: In Section 2 the notation used throughout 

the paper is introduced; we define and briefly discuss some properties such as 

regularity etc., of cardinals which are required later, and we carry out the con- 

struction of  the spaces which welater prove to have desirable superuniversality 

properties. Next, in Section 3, tc-superuniversality is studied in detail especially 

with respect to regular cardinals. In Section 4, a somewhat weaker concept is 

discussed which we call weak x-superuniversality and which seems to be more 
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appropriate for the study of singular cardinals. Finally, in Section 5, various 

generalizations are considered and in Section 6, some open problems are 

stated. 

We wish at this point to express our gratitude to Charles Joiner for suggesting 

this topic, for making available to us a prepublication copy of [8], and for many 

stimulating discussions on this subject. We also wish to thank W. Wistar Comfort 

for bringing the works of Morley and Vaught, J6nsson, Sierpifiski, and Fleischer 

to our attention and to thank Frank Harary for directing us to the work of Rado. 

2. Notation and the spaces H~ 

For each infinite cardinal ~c and certain welt orderings of a certain set ~-, we 

construct a metric space H~ Then in later sections, if will be shown that these 

spaces have the superuniversality properties of interest to us and are usually the 

smallest such spaces. 

As has become customary, we identify cardinals with initial ordinals; that is 

the cardinality of a set A, which is denoted by [ A I, is defined to be the smallest 

ordinal which can be mapped onto it. It should be noted that in making this 

definition the axiom of choice is assumed. We shall continue to assume this 

axiom throughout the paper. 

We need a certain amount of notation. For any function f, any sets A and B, 

and any cardinal i< denote the domain o f f  by dm (f)  the range o f f  by rn (f), the 

smallest ordinal ~ such that dm (f)  _~ ~ by bn (f) ,  the function f restricted to the 

set A b y f  [" A, the set {a ~ A: a ~ B} by A - B, the set of functions from A into B by 

AB, the cardinality of AB by B a, the power set of A by ~(A), the set {C __c A: I C I 

< t<} by ~K(A), the set {C _c A: [ C[ -< ~} by ~+(A), the smallest cardinal greater 

than ~ by g+, and Zx<~ 2 4 by 2 ~. If A has some ordering -~ associated with 

it (in particular, ifA is an ordinal), then we use ~(A) to denote the set of bounded 

subsets of A, i.e., the set { C c_ A: 3a ~ A (e e C ~ c -~, a)}, and we use ~,(A) and 

~ ] (A)  to denote ~K(A) C~ ~(A) and ~+(A) t3 ~(A) respectively. 

I f S  = (S ,p )  and T= (T,v)  are any two metric spaces, then denote the set of 

isometries from S into T by J(S ,  T), the set of isometries from some subset of S 

into r by 5:J(S,  T), and the set of isometries from members of ~,(S) or ~+(S) 

into r by 5~ T) and 5"J~+(S, T) respectively. 

We reserve R to denote the real numbers, R + to denote the positive real numbers, 

R and R + to denote the metric or topological spaces generated by R and R +, 
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and < to denote the natural ordering on R or the natural ordering among the 

ordinals (precisely which, will always be clear from the context). 

We frequently need to deal with the notions of  regularity, cofinality, etc., of 

cardinals. A cardinal ~ is said to be a successor cardinal iff it is equal to 2 + for 

some cardinal 2 and to be a limit cardinal otherwise. The cofinality of  a cardinal 

~, which we shall denote by cf(r) ,  is defined to be the smallest cardinal ). such that 

i.e., such that ~ contains an unbounded subset of cardinality 2. Equivalently, the 

cofinality of  tc may be defined to be the smallest cardinal 2 such that there exists a 

family {A~: ~ < 2} of ). sets each of  cardinality strictly less than ~c whose union 

~.J~,:~A~ has cardinality K. We then define a cardinal r to be regular iff 

cf(x) = K, or equivalently, 

= 

and to be singular otherwise. It is well known that every successor cardinal is 

regular and that it is consistent with the axioms of Zermelo-Fraenkel set theory 

including choice (which we hereafter refer to as ZFC) that all uncountable regular 

cardinals be successor cardinals. A limit cardinal which is regular is generally 

referred to as an inaccessible cardinal. 

Throughout  this paper, we shall be interested in knowing when we can add a 

new point to a metric space with specified distances to at least some of  the points 

already there. Thus if ( U , / ~  is any metric space and f is any function from some 

subset S ~ U into R +, then we define f to be consistent iff 

If(s) - f ( t ) [  < ~(s,t) <f (s )  +f ( t )  for all s, t eS ;  

to be superfluous at u iff it is consistent and 

inf({f(s) + p(s, u): s c S}) = O; 

and to be SUl~erguons iff it is superfluous at some point u. 

Intuitively, we think o f f  as consistent if it defines a set of  distances which do 

not violate the triangle inequality and superfluous if it defines a set of distances 

which is uniquely satisfied by a point already in the space. More formally, we have: 

2.1 LEMMA. I f  U = (U,p )  is any metric space and f is any function from 

some subset S ~  U into R +, then: 
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1. I f  for  some point u ~ U 

f ( s ) = # ( u , s )  for  all s e S ,  

then f is consistent. 

2. I f  f is superfluous at some point u ~ U, then: 

a. #(u, v) = inf({f(s) + p(s, v): s e S}) for  all v ~ U, 

b. p ( u , s ) = f ( s )  for  all s~S .  

3. I f  f is consistent but not superfluous and v is any point not in U, then U can 

be extended to a metric space ( U  u{v},v)  in which: 

a. v(v,u) = inf({f(s) + #(s,u): s e  S}) for  all u E U, 

b. v(v,s) = f ( s )  for  all sES .  

PROOF. Part 1 is an immediate consequence of the triangle inequality. To 

prove 2.a, we note that from the triangle inequality and the consistency o f f  we have 

#(u,v) <= #(u,t)  + #(t,s) + p(s,v) <= p(u,t)  + ( f ( t )  + f ( s ) )  + #(s,v) 

= (#(u, t) + f ( t ) )  + (#(s, v) + f ( s ) )  for all s, t ~ S. 

Now taking the infimum over t E S of both sides and using the fact t h a t f i s  super- 

fluous, we obtain 

p(u ,v)<=f(s )+#(s ,v )  for all s ~ S .  

Hence 

#(u, v) _-< inf({f(s) + #(s, v): s e S}). 

On the other hand, we note that 

~(s, v) < /4u ,  v) + ~(u, s) 

SO 

for all s e S, 

f ( s )  + p(s, v) <= #(u, v) + f ( s )  + #(u, s) for all s e S. 

Again taking the infimum over s e S and using the fact t h a t f  is superfluous at u, 

we have 

inf({f(s) + p(s, v)}) < #(u, v). 

To prove 2.b, we note that the only way it could fail would be if  for some 

t e S, we had 

f ( t )  + p(t, s) <f(s ) .  

But this implies 
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/~(t, s) < f ( s )  -- f( t) ,  

which violates the consistency o f f .  

Finally, the proof of 3 requires only a check of the triangle inequality. �9 

Our construction of H~consists of choosing a set and looking at all functions 

over it with domain of cardinality less than x and range contained in R +. Because 

we examine each such function separately, we need a set which has the same 

cardinality as the set of appropriate functions over it. The smallest such set turns 

out tobe  one of cardinality 2 ~ and for simplicity we use 2 ~ itself. It also turns out 

that when 2 ~ is singular, it is not always sufficient to require that the domains be 

bounded in cardinality; they must also be bounded in order. 

Thus for each uncountable cardinal x, let . ~  be the set of functions f into R + 

such that 

dm (f)  e ~(2~).  

We note that if of(2 ~) > x (which is always the case if ~ is regular), then we may 

replace ~ ( 2  ~) by ~(2~).  

2.2 LEMMA For every uncountable cardinal x, the set o~ has cardinality 2 ~ 

PROOF. Clearly 2 ~ < [ ~'~1- For each A e ~ ( 2  ~) we have 

[ { f ~  ~'~: dm ( f )  = A} [ = (g  +)a = (2~o)A < 2~o.l,tl< 2 ~. 

Thus we need only show that ] __< 2 In particular, it is sufficient to show 

that for each e < 2 e, we have 1 ~ ( e )  l < 2~- But for any e < 2 ~there exists a cardinal 

2 < x such that e < 2  ~ so we have 

~<1r •<1r g<lr  

We can now carry out the construction of the spaces which we eventually use as 

examples ofsuperuniversal spaces. Define a well ordering <( o f ~  to be admissible 

iff ~'~ has order type 2 ~ under it; thus under an admissible ordering, we may 

think of ~'~ as {f=: 0~ < 2e}. Then for each uncountable cardinal x and each 

admissible well ordering -< of ~-~, we define a metric space 

= . % .  

For H~, we use the set 2 e although, for easier readability, we frequently continue 

to denote it by H~; we define #'< by transfinite induction using members of ~ .  

Thus suppose we have already defined #'~ on = (i.e., we have defined i.t'<(fl, y) 
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for all fl,7 < ~) and we wish to extend #< to the point a itself (i.e., we wish to 

define #(~,fl) for all fl < ~). Let 6 be the least ordinal suchthat  dm(f~) ~ a,fa is 

consistent but not superfluous over (~,/~'<), andf~ has not been used in a previous 

step of  the construction. Denote this function f~ by f~ and, using 2.1.3, define: 

#<(~,fi) = inf({ff(d) + p'<(d, fl): d ~ d m ( f f ) } )  for all f l ~ .  

It remains to be proven that there always exists such a 6. This can be done using 

the methods of 3.2 ,but we shall not do so here. It is sufficient to note that if such a 

6 does not exist, we can always obtain one by dropping the condition that fo has 

not been used, without adversely affecting the construction. 

The crucial property of  H i is: 

2.3 THEOREM. I f  f ~ ~ is consistent and f =f~ under ~,, then there exists a 

point aeHx such that: 

a. ]al<]max(6,bn( f ) ,No)  1, and 

b. #'<(a,~/) = f 0 / )  for  all t / ~dm( f ) .  

PROOF. Let a = max(6,bn(f ) ,No) .  At each stage in the construction after a, 

it will be possible to considerf. But there will be at most 6 functions which may be 

considered after a and yet before f~ = f ;  so if 7 is the stage at wh ich f i s  actually 

considered, we have ~ < a + 6. At this time, f will become f r  unless there is a 

point below ~ with respect to which it is superfluous. If  there is such a point fl, 

set ~ = fl; otherwise set a = ~. In the first case, part b follows from 2.1.2, while in 

the second it follows immediately from the definition of  #<. In either case, part a 

is satisfied because 

3. Superuniversality and regular cardinals 

Using our new notation we repeat the definition of  x-superuniversality. 

A metric space (S ,# )  is ~-superuniversal i f f for every metric space (T,v)  of 

cardinality ~: every isometry in ~J~(T ,S)  can be extended to an isometry in 

J(T,S) .  

We begin our study of  these spaces with a collection of  alternate characteriza- 

tions of  this property. Of  these, property 1 is the weakest in appearance, 2 is the 

one we shall generalize into what is called weak x-superuniversality when we deal 
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with singular cardinals in Section 4, 4 will have an interesting categcry theoretical 

interpretation which we shall mention in 5.4, and 6 is a version of 1 which is per- 

haps the most useful in actually proving that particular spaces are x-superuniversal. 

Finally, we remember that to construct Urysohn's space, one first constructs a 

certain countable metric space and then looks at its completion. However, it 

follows immediately from the definition, that x-superuniversal spaces are complete 

for every uncountable cardinal x. (If  6: is any Cauchy sequence in such a space, 

then take the countable space consisting of said sequence plus a limit point and 

extend the identity isometry to obtain a limit point in the large space.) Thus it 

is not surprising to find that we can embed not only spaces of cardinality r into 

K-superuniversal spaces, but all spaces which contain dense subsets of cardinality 

r.  Unfortunately, this result is not quite as strong as it might seem due to the 

fact that if  a metric space contains a dense subset of cardinality K, then it can have 

cardinality at most x ~~ which, in many cases, is just x itself. However, it is still 

of  interest, and we include it as part 5. 

3.1. THEOREM. For any uncountable cardinal x and any metric space 

S = ( S , # )  the following are equivalent: 

1. I f  (T ,v )  is any metric space of cardinality less than ~c and t is any member 

of T, then every isometry in J ( T - : { t } , S )  can be extended to an isometry in 

J (T ,  S). 

2. I f  (T , v )  is any metric space of cardinality less than x, then every member 

of S~J(T,S) can be extended to an isometry in J(T ,$) .  

3. ( S , p )  is x-superuniversal. 

4. I f  (T , v )  is any metric space of cardinality less than x, (U ,~)  is any metric 

space of cardinality at most x, f is any isometry in J(T,  S), and g is any isome- 

try in . /(T, U), then there exists an isometry h ~ J (U,  S) such that h o g =f .  

5. I f  (U,  v) is any metric space which con ta ins a dense subset V of eardin a lity 

x, then every isometry in 5e~c~(U, S) can be extended to an isometry in J (U,  S). 

6. I f  f is any consistent function from some set U ~ r ( S )  into R +, then there 

exists a point s ~ S such that 

p(s,u) = f ( u )  for all u ~ U. 

PROOF. To obtain 2 from 1 or 3 from 2, apply the former an appropriate 

number of times using transfinite induction. Part 4 follows immediately from the 

fact that an isometry is an embedding, while 6 is an alternate statement of 1. 
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Finally, 5 can be obtained from 3 by first finding an extension g ~ J ( U  u V,S) 

o f f  and then using the fact that S is complete. �9 

We next consider the cardinality of x-superuniversal spaces and begin with a 

lower bound. 

3.2 THEOREM. Every nonempty open subset of a ~-superuniversal metric space 

has cardinality at least 2 ~. 

PROOF. Let <S,g) be any x-superuniversal space and let T be any nonempty 

open subset of S. Then for some positive real number r there exists a point p e T 
such that 

{ t~ S: #(p,t)  < r} c T. 

Now let 2 be any cardinal less than x. By the x-superuniversality of (S, #>, we may 

choose a set U _c S of  cardinality 2 which contains p and satisfies 

#(u, v) = r for all distinct u, v E U. 

For each set A ~ U, l e t f  A be the function from U into R § defined by 

cr/2 u ~ A 

fa(u)  = ) [3r /4  u r A. 

Each funct ionf  a is consistent so by 3.1.6 we have for each A _ U a point pa e S  

satisfying 

= ~ r / 2  u ~ A  

#(p~, u) [3r /4  u r A for every u z U. 

But clearly, each pa~ T, and we have 

pa = pa ..~ A = B, 

so {pa: A _~ U} is a subset of T of cardinality 2 4. Hence we have shown that 

IT I > 2 4 for every 2 < x, 

and IT] must therefore be at least 2 ~. �9 

Thus every x-superuniversal space has at least 2 e points. This will also follow 

from 3.12. For uncountable regular cardinals x, this will be best possible because 

the H i are, as we will note next, x-superuniversal. For singular cardinals we do 

not know. The most that can be said at the moment is that if x is singular and 

2 R = x, then there do not exist x-superuniversal spaces of cardinality 2 ~. We prove 

tlals in 4.6. 
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3.3 Theorem. I f  r. is any uncountable regular cardinal and -~ is any 

admissible well ordering of ~ ,  then H~  is ~:-superuniversal. 

PROOF. Immediate from 2.3 and 3.1.6. [] 

3.4 COROLLARY. I f  K. is either an uncountable regular cardinal or a singular 

cardinal for which some cardinal 2 satisfies 2 4 = 2 ~, then: 

1. The smallest ~:-superuniversal metric space has cardinality 2 ~. 

2. There exists a x-superuniversal metric space of  cardinality ~ if/" there 

exists a cardinal ~ such that ~ = 7 + = 2 ~ or tc is inaccessible and every cardinal 

< ~ satisfies 2 ~ < ~. 

PROOF. For  regular cardinals these properties follow directly from 3.2, 3.3, and 

the definition of  2 ~. If, however, x is singular and some cardinal 2 < x satisfies 

2 4 = 2 ~, then by a theorem of  the author  [7] and Bukovsk} [ t ]  we have 

2 ~ = 2 ~. But 2 ~ = 2 ~+ , so it is sufficient to look at spaces of  the form H~+'<. [] 

Using the above, we can partially answer the question as to when there exist 

tc-superuniversal metric spaces of cardinality K. The best we can hope for, of  

course, is a collection of  consistency results and even here we cannot obtain 

complete results because we do not  know enough about powers of  singular 

cardinals. In particular, we do not know if  it is consistent to assume that for no 

cardinals rc do there exist tc-superuniversal spaces of cardinality x; the best we 

can do in this direction is 3.5.4 below. 

3.5 THEOREM. 

1. The following statements are equivalent: 

a. For every regular uncountable cardinal K, there exists a ~c-super- 

universal metric space of cardinality K. 

b. For every successor cardinal K, there exists a ~-superuniversal metric 

space of cardinality ~. 

c. (Generalized Continuum Hypothesis) Every infinite cardinal ~ satisfies 

2 ~ = ~ .  

2. I t  is consistent with the axioms of  Zermelo-Fraenkel set theory with choice 

(ZF C) that, for every regular uncountable cardinal K, there exist ~-superuniversal 

metric spaces of  cardinality ~c. 

3. I t  is consistent with ZFC that, for some but not all regular cardinals ~, 

there exist ~-superuniversal metric spaces of  cardinality r. 

4. I t  is consistent with ZFC that every regular cardinal ~;, for which there 
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exists a x-superuniversal metric space of cardinality x, be the successor of a 

singular cardinal. 

5. The existence of a strongly compact cardinal implies the existence of 

arbitrarily large regular cardinals ~c for which there exist Ir 

metric spaces of cardinality ~r 

PROOF. Part 1 follows from 3.4, part 2 follows from the known [6] consistency 

of the generalized continuum hypothesis, while parts 3 and 4 follow from 3.4 and 

Easton's [2; 3] consistency results on the function 25. Part 5 follows from a result 

recently announced by Solovay and Kunen. A definition of and information about 

strongly compact cardinals can be found in [13]. �9 

We next consider the question of uniqueness. We show that for uncountable 

regular cardinals ~ there exists a unique (up to isometry) ~-superuniversal space 

iff 25 = x. We begin with: 

3.6 THEOREM I f  Ir is any uncountable regular cardinal satisfying 25= r, 

then all ~r metric spaces of cardinality ~c are isometric. 

PROOF. Suppose S = (S,/~) and T=  (T, v) are x-superuniversal metric spaces 

of cardinality ~. We well order both S and T with order type x thus obtaining 

S = {s~: ~ < x} and T = {t~: �9 < ~:}, and using these well orderings we construct 

inductively certain sequences {f~: ~ < ~:)=SeJK(S, T)and {0~: ~ < x} c 5eJK(T,S ). 

Using 3.1.1 we choose a function ~ such that 

~(f,~) extends f for all f ~  ISaJK(S, T) U 5eJ~(T, S)], 

~(f,~) ~St~r T) and s ,~dm(~(L~))  for all f~SeJ~(S,  T), 

~(f,  ~) ~ 5PJ~(T, S) and t, ~ dm(~(f,  ~)) for all f e  5eJK(T, S). 

Using this function, we inductively define our sequences by setting 

fo = {(So, to)} and go = {(to, So)), 

f ,+ l  = ~(0~-1, ~ + 1) and g,+1 = ~(f~-+11, ~+ 1) for all ~ < x, 

fa = 0 f ,  and g~= U o, for all limit ordinals 2 < x .  
~t<~, ~t<~. 

It is easily seen that these are internally consistent and that 

f = U L ~ J ( S , T ) .  �9 

Thus, in what follows, for regular uncountable cardinals satisfying 2 ~ = x we 
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use H~ to denote the unique (up to isometry) x-superuniversal metric space of 

cardinality r .  

To prove that when 2~# ~, there exist ~-superuniversal spaces of cardinality 

2 ~ other than the H~, we define a certain kind of subspace called a K-isolated 

unitary space and prove that while every such subspace of H~ has cardinality at 

most r ,  it is possible to modify the construction of H~ in such a way as to obtain 

a ~c-superuniversal space of cardinality 2 ~ which contains a ~-isolated unitary 

subspace which is of cardinality 2 ~. We need some definitions and lemmas. 

First define a metric space (S, #)  to be a unitary space iff 

#(s, t) = 1 for all distinct s, t ~ S. 

Then if (S,/~5 is any metric space, x is any cardinal, T is any unitary subspace of 

S, and p is any point in S - T, define p to be strongly x-isolated from T iff 

I ( t~  T: p(p,t) < 3/2}[ < K; 

to be weakly K-isolated from T with respect to some point u E Ti f f  

#(p, u) < �89 and 

[{t~ T: ti(p,t) # 1 +/ l (p ,u}l  < g; 

and to be ~c-isolated from Tiff i t  is either strongly or weakly (with respect to some 

point u e T) ~:-isolated from T. Finally, define T itself to be K-isolated in S iff 

every point in S -  T is it-isolated from T. 

The notion of x-isolation seems to be necessary because if p is any point in an 

H i ,  then there will grow around p a unitary space each of whose points is exactly 

�89 from p and it is easily seen from the construction of H i that this space will 

eventually contain 2 ~ points. The next theorem, which contains the crucial part of 

our argument, in effect tells us that ~:-isolated unitary spaces do not grow too large 

in the H i  but, in fact, have cardinality at most ~:. 

3.7 THEOREM. Let (S ,p )  be any metric space, let r. be any regular cardinal, 

let T be any x-isolated subspace of S, and let f be any consistent nonsuperfluous 

function from some set D ~ ( S )  into R +. Then if we add a new point p to S 

and extend # by setting 

I~(p, d) = f(d) for d e D, and 

#(p, s) = inf({f(d) + #(d, s): d ~ D}) otherwise, 

the point p will be K-isolated from T. 
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PROOF. For  each element d e D, we define the pathological set Pa of  d by 

Pa = {d} 

Pd = ( t e  T: It(d,t) < 3/2} 

Pd = ( t e  T: It(d,t) # 1 + It(d,u)} 
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if d r  

if d is strongly x-isolated from T, 

if d is weakly x-isolated 

from T with respect to u, 

and we define the pathological set Po of  D by 

Pn = ~.J Pa. 
d e n  

We note that since T is x-isolated, each Pa has cardinality less than x. But x is 

regular, and D also has cardinality less than x, so we may conclude that 

IPol < x .  

We now consider two separate cases. 

Case 1. Suppose we have 

f (d )  + #(d, t) > �89 for all d ~ D and t ~ T. 

We show that, in this case, p is strongly x-isolated from T. In particular, for any 

fixed to e T -  PD, we have 

#(p, to) > 3/2. 

To prove this, it is sufficient from the definition of  It to prove that 

f(d) + It(d, to) _>- ~ for all d ~ D. 

But to r Pa ~- Po so either It(d, to) ->_ ~ in which case we are done, or for some 

u e T we have 

It(d, u) < �89 and It(d, to) = 1 + It(d, u). 

However, our assumption in case 1 is that for no u e T do we havef (d)  + It(d,u) 

< �89 Thus we see that 

f (a )  + It(d, to) = f ( d )  + It(d,u) + 1 > (�89 + 1 = ~. 

Case 2. For  some d ~ D and some u ~ T, we have 

f ( d )  + It(d, u) < �89 

We note that although d is not determined by the above inequality, it follows 

from the consistency of  f and the fact that T is unitary that u is determined. 

Thus we may think of  u as fixed. We note from the definition of  It that 
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u(p, u) < �89 

and we shall show that p is weakly x-isolated from T with respect to u. Again, 

in particular, we shall show that for any fixed t o ~ T - Po we have 

p(p, to) = 1 + p(p, u). 

Since the triangle inequality gives us 

#(p, to) <= It(to, #) + #(P, u) = 1 + #(p, u), 

we must prove 

inf({f(d)  + p(d, to): deD}) > 1 + inf({/(d)  +/~(d, u): deD}). 

Equivalently, for every d e D we must exhibit a point e e D such that 

1 +](e) + p(e,u) <f(d)  + It(d, to). 

Thus choose any fixed d ~ D. Since t o 6 Pa c_ Po we again have either p(d, to) > �89 

in which case we are done because of  the hypothesis defining case 2 or we have 

some v ~ T such that 

p(d, v) < �89 and /~(d, to) --- 1 + #(d, v). 

I f  v = u we are again done because our desired inequality becomes 

1 +f(e) + I~(e,u) <f(d)  + #(d, to) = f ( d )  + 1 + p(d,u), 

and we may simply set e = d. On the other hand, suppose that v # u. Then from 

the fact that T is unitary and from the definition of  # we observe that 

p(p, u) < �89 and p(u, v) = 1, 

so by the triangle inequality and another appeal to the definition of/~ we have 

�89 < #(p,v) <f(d)  + p(d,v). 

Hence for any e e D satisfying 

f(e) + #(e, u) < �89 

we have 

l + f ( e ) + # ( e , u ) < l + � 8 9  to). �9 

Using this, we can prove: 

3.8 THEOREM. I f  x is any uncountable regular cardinal, ~, is any admissible 

well ordering of ~ ,  and T is any x-isolated unitary subspace of It~, then 

T has cardinality at most ~. 
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PROOF. Suppose not. Let ~ be any member of  T such that 

[ T N a l = • .  

Then T ncz is a x-isolated unitary subspace of  (~,p ~'a) of  cardinality x. But 

from 3.7 and the construction of  H i ,  we see that the point ~ itself must be x- 

isolated from T n c~. Thus we cannot have 

] = 1}[ --- �9 

3.9 THEOREM. I f  X is any uncountable regular cardinal, then there exists a 

x-superuniversal metric space S~ of cardinality 2 ~ which contains a x-isolated 

unitary subspace also of cardinality 2 ~. 

PROOF. Our construction of S~ will proceed in almost the same manner as that 

of H~. Thus let ~ be an admissible well ordering of  ~ ,  again use H~ = 2 ~ as 

our ground set, and inductively define our metric v point by point. In fact for 

any ordinal V of the form ~ + 1, we extend v to 7 exactly as before. If, however, 

is a limit ordinal, we use as f r  not some least member of ~ ,  but the function 

defined by 

f~(6) = 1 for every limit ordinal 6 < ~. 

Since each ne wf  r is both consistent and nonsuperfluous, the construction presents 

no new problems, and the proof  that S~ is x-superuniversal is as in 3.3. 

It is also easily seen that the set 

T = {7 < 2~: ~ is a limit ordinal} 

is a r-isolated unitary subset of S~ which has cardinality 2 g. For, suppose not. 

Then there must be some least ordinal ~ e 2  g -  T such that ~ is not x-isolated 

from T. Thus T n ~ must be x-isolated in (~, v [" ~). Hence by 3.7 and the con- 

struction ofF, ~ itself must be x-isolated from T C~ ~. But it also follows from the 

definition of  v that for each t e T -  ~ we have 

v(t,a) = inf({1 + v(d, c0: d e  T ha} ) ,  

and thus ~ is, in fact, x-isolated from all of  T. �9 

Finally, by combining 3.8 and 3.9, we see that not only do we have at least two 

nonisometric x-superuniversal metric spaces of  cardinality 2 g wherever x is an 

uncountable regular cardinal such that ~ < 2 ~, but: 

3.10 COROLLARY. For every uncountable regular cardinal tc such that x < 2  ~ 
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there exists a r.-superuniversal metric space S~ of cardinality 2 ~ which is not 

isometric to any H i .  �9 

We conclude this section with a study of x-superuniversal subspaces of x- 

superuniversal spaces. We shall prove that every such space contains a family of 

2 ~ disjoint such subspaces, and we shall construct such spaces of cardinality 2 ~ 

which can be decomposed into a disjoint union of 2 ~ such subspaces. We begin 

with: 

3.11 THEOREM. Let (S ,# )  be any r-superuniversal metric space, let T be 

any subset of S of cardinality less than r, and let t be any fixed member of T. 

Then the space #enerated by the set 

U = {s e S: u ~ T ~ p(s, u) = #(s, t) + p(t, u)) 

is itself ~c-superuniversal. 

PROOF. Use 3.1.6 as the characterization of ~-superuniversality. Thus let f be 

any consistent function from some member V E N~(U) into R +. I f  f is super- 

fluous at the fixed point t, then it follows from 2.1.2 that 

ll(t,v)=J(v) for every v e V ,  

and, since it follows from our definition that t E U, we are done. I f f  is not super- 

fluous at t, we may assume that t is a member of its domain, for if not we can set 

f( t)  = inf({f(v) + #(v, t): v e V}), 

and f will remain consistent. But now we can consistently extend f to all of T by 

setting 

f(s) = f ( t )  +p(s,t) for all s eT .  

The expanded function f is a consistent function from the set V u T e ~ ( S )  in 

R +, and thus from the x-superuniversality of (S,/~), there must exist a point 

p ~ S such that 

u(p,s) --f(s) 

Then, in particular, we have 

#(p, s) = f ( t )  +/l(s,  t) =/ l(p,  t) + #(t, s) 

so p e U and we have satisfied 3.1.6. 

This can be used to give us: 

for all s s V t d T .  

for all s e T, 
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3.12 COROLLARY. I f  ( S , # )  is any x-superuniversal metric space, then there 

exists a fami ly  of 2 ~ di~joint x-superuniversal subsets of S. 

PROOF. We first prove that we can find a family of  tr such spaces. Let 

U = {u~: ~ < x) be a unitary subspace of  S, and for each 0 < c~ < x define 

T ~ = {s e S: fl < o~ ~ p(s, up) = 1 + p(s, u~)}. 

We see that if we regard {up: fl < 0t} as T and u~ as t, we can apply 3.11 to show 

that each T ~ is x-superuniversal. Also, for any 0 < e < fl < x, we have 

#(t, Uo)= 1 + #(t, up)=p(t,u~) for all t e  T p, 

p(t, Uo) = 1 + p(t, u~) for all t ~ T ~, 

SO 

~ r  ~ for all 0 < o t < f l < x .  

Thus if 2 e = ~c, we are done. Otherwise, we also need to know that for any cardinal 

2 < x we can find a family of  24 disjoint x-superuniversal subspaces. To show this, 

choose some unitary subspace V ~ S of  cardinality 2 and for each set A ~ V 

choose a point t a such that 

~(tA, v) = ~ �89 v~A 
[ �88 v ~ V - A .  

Now, as before, let 

T a = {s ~ S: v ~ V --* #(s, v) -- #(s, t A) + #(t a, v)} for all A ~ V. 

Again, by 3.11, each T a is x-superuniversal, and by an argument similar to the 

above, we have 

A # B ~ Ua N Un = ~ for all A, B c_ V. 

Finally, let (F~: ~ < to} be a family of disjoint x-superuniversal subsets of  S, 

and for each ~ < x, let {Fff: fl < 2 ~} be a family of  disjoint x-superuniversal 

subsets of  F~. Then the family 

{ F ~ : ~ < x  a n d f l < 2  ~} 

is a family of  2 ~ disjoint x-superuniversal subsets of S. �9 

We should note that while all of  the x-superuniversal subsets of x-superuniversal 

spaces that we have constructed are nowhere dense, this is not a property of  all 

such subsets. In fact, using essentially the same techniques as in the proof  of  3.11, 

we can show: 
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3.13 THEOREM I f  ( S , # )  is any ~c-superuniversal metric space, p is any point 

in S and r is any positive real number, then the subset 

T = {s e S: p(s, p) >-_ r} 

is tc-superuniversal. �9 

On the other hand, every x-superuniversal subspace is closed, and since even 

Nl-superuniversal spaces are arcwise connected (by 3.1.5), we cannot decompose 

a x-superuniversal space into a finite union of  disjoint x-superuniversal spaces. 

In general, we do not know about infinite such decompositions; the best we can 

do is : 

3.14 THEOREM. For every uncountable regular cardinal tc there exists a 

x-superuniversal space which can be decomposed into a disjoint union o f  2 ~ 

isometric ~c-superuniversal subspaces. 

PROOF. Let x be any uncountable regular cardinal. Our construction will 

consist of pasting together 2 ~ copies of some H~. Thus let -< be an admissible 

well ordering of . ~ ,  and choose an indexed set 

s = < 2 

which will be of cardinality (2~) 2 =  2 ~. Then set 

p(s~, s~) = #'~(a,7) for all a, fl, 7 < 2~ 

where #'~ is just the metric on H ,  <. We let ~ be the set of functions from ~ ( S )  

into R +, and we choose a well ordering -~ of  f~ under which (d is order isomorphic 

to 2 *(N has cardinality 2 eby 2.2). 

We shall define the metric # between points in the different copies of H [  by 

induction using N. Thus assume we have already defined P ~ ,u(s~,s~) for all fl, 6 < a 

and that we wish to define p(s~,, s~,) for fl < a. Let g be the least member of f~ 

under -,( satisfying 

sff~ dm (g) -~ fl < tr 

which has not yet been used and is consistent but not superfluous and set 

/~(s~, s~) = inf({g(s~) + p(s~,~ s,) p : s~ e dm (g)}) 

= So) + , ( s ; ,  

for all fl < a, 

for all fl < a. 

It is easily seen that the resulting metric has all the desired properties. �9 
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3.15 COROLLARY. I f  1r is any regular cardinal satisfying 2~=g, then H~ can 

be decomposed into a union of  ~ disjoint x-superuniversal subspaces each 

isometric to the original space. �9 

4. Weak superuniversality and singular cardinals 

As stated earlier, when dealing with singular cardinals, we need certain 

boundedness conditions. Therefore define an ordered metric space to be a structure 

(S, p, -<) such that (S, p)  is a metric space and (S, -<) is a well-ordered structure 

order isomorphic to ] S[. Since we shall frequently be concerned with isometries 

with bounded ranges, define, for any metric space (T, v) and any ordered metric 

space (S, p, -<), the sets ~'J(T, S), ~5%r S), MSaJ~(T, S), and ~SeJ+(T, S) by 

~(SP)J~+) ) = {f~ (~)J[~)(T,  S)" rn (f) ~ ~(S)}. 

Then, following 3.1.2, define an ordered metric space S to be weakly ~c-super- 

universal iff, for each metric space T of cardinality less than ~r every isometry 

f ~ S ' ~ J ( T ,  S) can be extended to an isometry g ~ ~'J(T, S). 

It should be noted that we do not require Tto be ordered nor do we require 

tha t f  and or g be order preserving. Such conditions would be impossible to fulfill 

because Cauchy sequences have unique limits in any given space whereas the 

positions of these limits in an ordering are not at all unique. 

We note that there do not seem to be any general implications between the 

notions of weak ~-superuniversality, and either ~-superuniversality or even 

universality for all metric spaces of cardinality x. The best we can do is: 

4.1 THEOREM. For any metric space (S,/~): 

1. I f  cf([S]) > ~c, then S is x-superuniversal iff for every well ordering ~, of S 

such that (S , -~ )  has order type ]S], the ordered metric space (S, t2,-r is 

weakly ~-superuniversal. 

2. I f  cf( I S ]) >~ cfQr and (S, #) is weakly ~c-superuniversal, then: 

a. I f  (T,v)  is any metric space of cardinality 1r then every member of 

~5"J, (T,  S) can be extended to an isometry in J(T,  S). 

b. I f  (T ,v)  is any metric space of cardinality less than 1r (U, tl) is any 

metric space of  cardinality at most 1r f is any isometry in ~ J ( T ,  S), and g is 

any isometry in J(T,  U), then there exists an isometry h e J ( U , S )  such that 

h ~ =f .  
c i f  Isl  has cofinality greater than No (in particular, if l s l  = 2 and 

cf(~:) > ~;o), then: 
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1. (S ,p )  is complete. 

2. I f  (U,v)  is any metric space which contains a dense subset of 

cardinality x, then every isometry in ~SeJ~(U,S) can be extended to 

an isometry in J(U,S) .  

PROOF. Part 1 follows immediately from the appropriate definitions. To 
construct the desired isometry in 2.a, we divide T into of(K) pieces each of car- 
dinality less than tr and then construct an increasing sequence of bounded 
isometries piece by piece. Parts b and c follow from a, �9 

Using essentially the same proof as in 3.2, we have: 

4.2 THEOREM. Every nonempty open subset of a weakly ~c-superuniversal 

ordered metric space has cardinality at least 2 ~. �9 

We also have: 

4.3 THEOREM. I f  (S,l.t , -<) and (T, v, -<) are any two weakly x-superuniversal 

metric ordered spaces of cardinality ~c, then (S ,#)  and (T,v)  are isometric. 

PROOF. The construction of the isometry is similar to the construction of the 

analogous isometry in the proof of 3.6 except that it is not extended one element 

at a time but rather along an unbounded sequence of cardinality 2 = cf(x). Thus 

let S~ = {s~: ~ < 2} and J -  = {t~: ~ < 2} be strictly increasing unbounded 

sequences of elements from S and T respectively. Almost as in 3.6, let 

be the family of isometrics from members of ~ ( S )  into members of M~(T), 

let ~ be the family of isometries from members of M~(T) into members of &~(S), 

and again choose ~ such that for all ~ < 2 : 

O(f,~) extends f for all f e  ~ u c~, 

cb( f ,~)e~  and{seS:s-<s~)~dm(C~(f,~)) for a l l f ~  r ,  

O(g,~)ef# and { teT: t -<t~}~dm(~(g ,a) )  for all g~(~. 

Next, define two sequences {f, ~ ~ :  ~ < 2} and {g~ e ~:  ~ < 2} inductively by 
setting : 

=~(g~  , ~ + 1 )  and g~+l =gP(f~+l ,~+ 1) for all ~ < 2 ,  c t + l  - 1  

fr  = ~ f ,  and gr = ~.J fr  otherwise. 

It is easily seen that each fp ~ ~ and each gpEC#. For fl = ~ + 1 this 

follows from the definition of ~, and for fl a limit ordinal it follows from the 

fact that since ~: has cofinality 2, a union of fewer than 2 bounded subsets of S or T 
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remains bounded. Thus the construction is well defined for all ~ < 2, and f =  [,_J, <4f, 

is an isometry from <S,p> onto <T,v>. �9 

We are now ready to consider the weak superuniversality of the spaces H~. We 

have already shown (3.3) that, for x regular and -< admissible, these spaces are 

x-superuniversal, so by 4.1.3 they are, under any appropriate well ordering and 

in particular under < ,  weakly K-superuniversal. Similarly, if for some 2 < x we 

have 24= 2 ~ and x is singular, then, as noted in the proof  of  3.4, the spaces 

H~  and H~+ have the same cardinality and we need not concern ourselves with 

the former. Thus we define a singular cardinal x to be strongly singular iff 

2 4 < 2  ~ for all 2 < x .  

We note that a singular cardinal is strongly singular iff 

cf(2 ~) = cf(x). 

We begin our study of strongly singular cardinals with a return to the construction 

of  the H~.  As we have mentioned, we must put additional restrictions on the 

ordering -<. We first define the height of a function f e  ~-~ by 

ht ( f )  -- max (bn (f) ,  2dr'(S)). 

Then for x strongly singular and having cofinality 2, and 6a = {Tp: fl < 2} an 

unbounded sequence of cardinals in x, we define an admissible well ordering 

-< of ~ (which becomes {f~: c~< ~}) to be strongly SP-admissible iff we have 

ht(f~) __< 24a~ ~ < 24~ for all ~ < x and fl < 2. 

Finally, we define an admissible well ordering of ~ to be strongly admissible 

iff it is strongly 6e-admissible for some appropriate sequence 6a. 

4.4 LEMMA. I f  X is any strongly singular cardinal with cofinality 2, then: 

1. I f  6e = {Ta: fl < 2} is any unbounded sequence of infinite cardinals in x 

satisfying 

~, 2 ~ < 2 ~ for all fl < 2, 
~t<p 

then there exists a strongly SP-admissible well ordering of ~ .  

2. I f 6  a = {7~: fl < ).} is any unbounded sequence of infinite cardinals in ~, -< 

is any strongly 6e-admissible well ordering of ~ ,  <T,v) is any metric space 

of cardinality a < x, t is any member of T , f  is any isometry from T -  {t} onto 

some set S ~ M~(H,), and fl is any ordinal such that 
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2 ~ < 2  ~ and S c 2 ~ ,  

then f can be extended to an isometry g from T into H~ such that g(t) < 2 ~. 

PP, OOF. Part 1 follows from the fact that for any N < 2 we have 

I{fe  ~'~: ht ( f )  _<_ 2'~ = (2r~f o. (2~~ " = 2 '~. 

The proof  of  part 2 wilt follow almost immediately from the definition of  

strong admissibility and is, in fact, the motivation behind this definition. We 

begin by letting f be the function defined by 

f ( f (u))  = v(u, t) for all u e T -  {t}. 

From 2.1.1 it follows that f is consistent. Because 

d m ( f )  = r n ( f )  = S e ~ + ( 2 " )  ~ ~ (H~) ,  

we have f e  ~ ,  and because our hypotheses imply 

we alao see that 

ht ( f )  < 2 ~. 

Now suppose that under the well ordering -~ of ~'~, we have f - - f a .  Then bg 

the strong 6P-admissibility of -<, we have a < 2 TM. 

Finally, by applying K6nig's lemma (which implies that 

cf(2 ~) > t/ for every infinite cardinal q) 

to S which has cardinality tr < yp, we obtain 

bn ( f )  < 2 x~. 

Thus we can apply 2.3 to obtain a point a < 2 ~ satisfying 

I~'<(~,l(u)) = f ( f ( u ) )  = v(t,u) for all u e T -  {t}, 

and can set g ( t ) =  e. 

4.5 THEOREM. I f  X is any strongly singular cardinal with cofinality 2, then 

there exist strongly admissible well orderings of ~ .  

Moreover, if  ~ is any such strongly admissible well ordering then: 

1. (H~,# "<, <)  is weakly x-superuniversal. 

2. (H~,I, "<, <)  is 2-superuniversal. 

3. (H~,I ~'<, <)  is not 2+-superuniversal. 
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PROOF. The existence of strongly admissible well orderings follows from 4.1.4. 

To prove that (H~,p ~, < )  is weakly x-superuniversal, let (T,v) be a metric 

space of cardinality less than x, let f be a member of MS:J(T,  S), and let 

.5: = {7#: fl < 2} be an appropriate sequence under which -< is strongly S p- 

admissible. Then if we choose any fl such that bn (f) ,  [ T [ < 7p, it follows im- 

mediately from 4.1.2 t h a t f  can be extended element by element to an isometry g 

from T into H~ such that bn (g) < 2 ~#. 

Part 2 now follows from 1 and 4.1.1. To prove part 3, we first note that if 

T =  (T, v) is any 2+-superuniversal space and U is any unitary subspace of T of 

cardinality 2, then there exists a point t e T -  U such that 

v(u, t) = 1 for every u e U. 

Thus it will be sufficient to find such a subset U e ~ ( H ~ )  for which no appropriate 

point p e H~ exists. We shall define U inductively, and we begin by choosing some 

arbitrary strictly increasing unbounded subset V = {v,: ~ < ).} of H~. 

We shall set U = {u,: ~ < 2}, and we let Uo = 0. Now assume that we have 

already constructed U ~ = {u#: fl < ~} such that 

# ( u ~ , u r ) = l  for all f l < 7 < ~ .  

We wish to choose the point u~. Choose any point w~ ~ H~ such that 

w~ > v~ and w, > up for all fl < ~, 

and define a function f ~  ~ by 

f(u) = 1 for all u e U ~, and 

f(w~) = inf((1 + fi< (u, w~): u e U}) = 1 + inf({# "< (u, w~): u e U~}). 

The function f is clearly consistent and not superfluous, so it must appear as 

F ' "  in the construction of  H~ for some 7 > w~. Set u~ = Y. 

We see immediately that U is an unbounded subset of H~ of cardinality 2 and 

that, for any distinct u,ve U, we have #'~(u,v)= 1. Now suppose t e l l s - U .  
Since U is unbounded, there exists an ~ such that t < u~. However, it is easily 

seen that 

#'<(t,u,) = inf({1 + #'< (t,u): u e U'}) = 1 + inf({#'<(t,u): u e U'}), 
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and it is also clear that inf((p < (t, u): u ~ U~}) cannot equal zero. �9 

We can use this to extend 3.4 to: 

4.6 COROLLARY. There exists a x-superuniversal metric space of cardinality x 

iff 

2~= r. and x is regular. 

PROOF. It is immediate from 3.4 that we need only prove that, for no singular 

cardinals x, do there exist x-superuniversal spaces of cardinality x. So suppose 

there is such a space Tof  cardinality ~: where x is singular. By 3.2 we have 2 ~ = x, 

and since by K6nig's lemma, 2 cs(~) cannot equal x, x must be strongly singular. 

I f  we now examine the proof of 4.3, we see that it will still hold if one of the 

spaces in question is x-superuniversal rather than weakly x-superuniversal. Thus 

T must be isometric to H ~  and thus by 4.5.3 not even (cf(x))+-superuniversal 

much less x-superuniversal. �9 

We also note: 

4.7 THEOREM. I f  tC is any strongly singular cardinal such that 2 ~ ~ x, then 

there exists a weakly tc-superuniversal metric space S~ of cardinality 2 ~ which 

is not isometric to any H~ <. 

PROOF. We may apply 3.7 with respect to x + (which is regular) to prove that no 

H~  contains a x+-isolated unitary space of cardinality greater than x + and then 

use the construction analogous to that used in 3.9 to obtain the space S~ which 

contains a x+-isolated unitary subspace of cardinality 2 ~. �9 

4.8 COROLLARY. I f  Ir is any strongly singular cardinal, then there exists a 

unique (up to isometry) weakly x-superuniversal metric space of cardinality 

tr iff  2e=~:. �9 

We conclude this section with a study of the completions of the spaces H i  for 

strongly singular cardinals x of cofinality No. Denote the completion of the space 

H~  for such a cardinal x by C~ = ( C ~ , # ~ ) .  We first note: 

4.9 THEOREM. I f  tO is any strongly singular cardinal of cofinality N o, and -< 

is any strongly admissible well ordering of oj~, then C~ has cardinality 2 ~. 

PROOF. Choose any x and -< as in the hypothesis of the theorem. We shall 

construct a metric space S which can be embedded into H ~ a n d  whose completion 
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has cardinality 2 ~. Let {Yi: i ~ ~o} be a strictly increasing unbounded set of  cardinals 

in x and let 

S = {(~o,~1,... ,~i . . . .  ~ , -1 ) :  i < n ~ i  < 2~}. 

Define a metric v on S by setting 

v(<%, . . . , ~ , ~ + , , . . . ,  an>, <%, "",~./~+,, '",/~)) = 

m 
(�89 "]- E (�89 for ~t+1 ~ fli+,,  

j = i + l  j= i+ l  

and let S = (S, v). We may think of S as a tree with each point at the nth level 

having 2 ~"+~ successors. The metric can then be regarded as being obtained by 

setting the distance between a point at the nth level and one of its successors as 

(�89 and setting the distances between any other two points as the distance 

along the shortest path between them. Because the metric is defined so simply, it 

is easily seen that S can be embedded into H K even though S has cardinality 2 ~. 

We note that each path through the tree is a Cauchy sequence, that no two paths 

can have the same limit, and that there are 2 ~ paths. We leave the details to the 

reader. Thus C ~  has at least 2 K points. On the other hand, C~ ~ has at most 

(2~) ~~ < (2~) ~~ = 2 ~'t~~ = 2 ~ points. �9 

Since 2 ~ must have cofinality greater than x, it follows that if C~ "~ is weakly 

x-superuniversal, then it is x-superuniversal. In fact it has large enough cardinality 

to be x+-superuniversal. We next show that it is none of these. 

4.10 THEOREM. I f  X is any strongly singular cardinal of cofinality N O and 

-.< is any strongly admissible well ordering of ~ ,  then C~ is not Nx-super- 

universal and therefore not weakly Nl-superuniversal. 

PROOF. Let U be the subset of H~ which we constructed in the proof  of 4.5.3. 

We remember that U is a countable unbounded subset of H~ satisfying: 

a. #'<(u, v) = 1 for all distinct u, v e U, 

b. ~ < u ~ 3v ~ U(/l<(u, ~) = 1 + #'<(v, ~)) for all ~ ~ HK and u ~ U. 

(Part b follows from the fact that the infimums involved are all over finite sets 

and are therefore actually attained.) Now suppose C~ were Nl-superuniversal. 

Then as we noted in the proof of  4.5.3, we could find a point p e C~ such that 
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p~(p, u) = 1 for all u e U. 

But Q < i s  the completion of  H~,  so there would have to exist an ~ s (H~ - U) 

such that 

L (p, ~) < �89 

But this implies 

< ,~c(U,Z) = K < ( u , . )  < 

which in turn implies 

/~'<(u, ~) -/~'<(v, ~) < 1 

for all u e U 

for all u, v ~ U 

which violates condition b. 

5. Generalizations 

In this section, applications of  superuniversality to various collections of 

spaces are considered. We show that while the concept can be easily extended to 

one type of  bounded space, it cannot to another. We also produce two simple 

countable metrizable spaces such that any notion of superuniversality which 

included them would lead to nonHausdorff  superuniversal spaces, and we conclude 

with an application to graph theory. We begin, however, with a generalization 

in another direction. 

Although not stated, we have implicitly assumed that a metric space is a set 

on which a metric is defined. Suppose now we allow the space to have for its 

elements a proper class. (This can be done even in ZF, but we shall not concern 

ourselves with the details as the constructions are easier to visualize in set theories 

which admit proper classes as objects.) We then define a metric class to be a class 

C with a metric # defined on it and we denote the resulting structure by C -- (C,/~). 

(Technically, a bit of care is needed here because a class cannot contain proper 

classes as elements, so some sort of convention is needed to handle ordered pairs 

of  classes. One possibility is to define (A, B)  to be A • B whenever A and B are 

proper classes.) 

In class-set theory, there are two forms of the axiom of choice; one says that 

every set can be well ordered while the other says the same for every class. As the 

latter is known [2] to be strictly stronger, we state our definition of superuni- 
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velsality in a form that allows us to prove the existence of such a space using 

only the weaker form. Thus we define a metric class (C,/z)  to be superuniversal 

iff for every metric space (T, v) every isometry in S~J(T, C) can be extended to an 

isometry in •(T,C). Then, letting H denote the class of all ordinals, we have: 

5.1 THEOREM. There exists a superuniversal metric class (H,I~n). 

PROOF. Let ~- be the class of functions from subsets of H into R +. It is not 

hard to see that ~" can be well ordered with the order type of H and that this 

requires no stronger form of the axiom of  choice than that R § can be well ordered. 

But_once ~- is so well ordered, we can use the construction we used in Section 2 

to obtain #~ [] 

Our earlier results now generalize to, e.g.: 

5.2 THEOREM. I f  ( S , # )  is any superuniversal metric class, then: 

1. Every open subset of S is a proper class. 

2. There exist arbitrarily large "sets" of disjoint superuniversal metric 

subclasses of S. 

PROOF. The proof  of 1 is essentially as in 3.2. The statement of 2 is not quite 

correct since it is impossible to have a "set  of classes". What we mean is that if A 

is any nonempty set, then there is a function f from some subclass of S onto A 

such that for every a ~ A the subclass f -  l(a) is superuniversal. The proof is similar 

to that of  3.11 and 3.12. Some care must be exercised because S may not be well 

orderable, but this can be done as long as A is a set. [] 

Finally, suppose we define a (metric) class to be standard iff it (its class of 

elements) can be well ordered. It is well known that every such proper class can 

be well ordered with the order type of  H by using the notion of set rank. Thus we 

have: 

5.3 THEOREM. I f  H = (H,~t rt ) is superuniversal, then: 

1. Every standard superuniversal metric class is isometric to H. 

2. I f  (G,v)  is any standard metric class and f is any isometry from a subset 

of G into H, then f can be extended to an isometry from all of G into H. 

3. H can be decomposed into the disjoint union of a class of superuniversal 

metric classes each isometric to H itself. 

PROOF. Again the proofs are essentially the same as in 3.1, 3.6, and 3.t5 res- 

pectively; again 3 should be interpreted as stating the existence of a function f,  
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this time from all of H onto H such that f -  1(~) is a superuniversal metric sub- 

class of H which is isometric to H. �9 

We also note that the notion of superuniversity has an interesting 

category theoretic interpretation. Let rg be the category of all metric classes and 

all metric spaces, let rg <be the category of all metric spaces, let cg~ be the category 

of all metric spaces of cardinality K, let rg< be the category of all metric spaces 

of cardinality less than K, and let morphisms of all four categories be the approp- 

riate isometries. Then we may restate 3.1.4, 4.1.2b, and their equivalents for 

metric classes as: 

5.4 THEOREM. I f  every class is standard ( i f2~= K) and H is any superuniver- 

sal metric class ((weakly) K-superuniversal metric space of cardinality K), then 

H is a weakly terminal member of ~ ( ~ )  such that if V is any member of 

~< (~<), U is any member ofC~ (cg~),f is any isometry from V into H, and g is 

any isometry from V into U, then the diagram below can be completed so as 

to commute. 

U\ 

V = H  
f 

We next restrict the requirements of K-superuniversality to a subclass of metric 

spaces. Thus for any subclass ~ of metric spaces, we define a metric space (S,/~) 

to be K-superuniversal with respect to 9J~ iff for every metric space ( T , v ) e  9J~ 

of cardinality K every isometry in 5~d'.(T, S) can be extended to an isometry in 

J (T ,  S). 

In particular, we shall look at certain classes of bounded metric spaces. For 

any positive real number r, we define a metric space (S, #)  to have diameter at 

m o s t  r i f f  

/~(s, t) < r for all s, t ~ S, 

and to have diameter at most r - i f f  

/~(s, t) < r for all s, t ~ S. 

We would like to find spaces which are tc-superuniversal with respect to spaces 

of diameter at most r which are themselves of diameter at most r and similarly 
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for spaces of diameter at most r- .  However, while the former is easy, the latter is 

impossible. We have, following Urysohn: 

5.5 TIqEOREM. I f  x is any uncountable cardinal, r is any positive real number, 

( S , # )  is any ~r metric space, and T is any subset of S of diameter 

at most r and cardinality less than ~c, then the metric space generated by 

U = { s e S :  t~ T - ~ p ( s , t ) =  r]2} 

has diameter at most r and is x-superuniversal with respect to metric spaces of 

diameter at most r. 

PROOF. We can use essentially the same proof as in 3.11. Thus let f be any 

consistent function from some set V ~ ~ ( U )  into R +. It is easily seen that f can 

be extended consistently to T by setting 

f ( t )  = r/2 for all t e T 

arid that the point then obtained by applying 3.1.6 is in U. �9 

(The proof of this theorem does not generalize directly to weakly r-super- 

universal spaces because the set U might happen to be bounded in order. It is 

easily seen, however, that this will be no problem with the H~.) On the other 

hand: 

5.6 THEOREM. I f  r is any positive real number and S is any metric space 

which is Nl-superuniversal for metric spaces of diameter less than r, then S is 

not of diameter at most r - .  

PROOF. Let R be the real line with the usual metric and let T, T ~ and 

T r be the subspaces generated by the sets 

T = {q: 0 < q < r and q is rational}, 

T O = T u  {0}, and. T' = T U {r}. 

Since T has diameter at most r -  and is countable, there exists, by the Nl-super- 

universality of S, an isometryf from Tinto S. Then, again by Nl-superuniversality, 

f can be extended to isometriesf ~ a n d f  'which take T o and T' into S. But it is 

easily seen that in S, the distance betweenf~ andfr(r) must be r. �9 

It would also be of interest to extend these notions to topological spaces other 

than metric spaces. It is not clear, however, what we should require f to be. If 

we require that f be an embedding, then all of our constructions which proceed 
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point by point will fail because even a countable union of embeddings need not 

itself be an embedding. For example, let N be the space consisting of the positive 

ntegers with the discrete topology, le t f  be the function from N into R defined by 

f(1)  = 0 

f ( n + l ) = l / n  for all n>--l, 

and for each positive integer n let 

. fn=f[ '{m: m < n}. 

It is easily seen that eachfn is an embedding of its domain into R, b u t f  is not an 

embedding. 

If, on the other hand, we merely require tha t f  be a continuous injection, then 

it is easy to find a space of cardinality x which is superuniversal with respect to 

all topological spaces of cardinality to, namely, the indiscrete space ofcardinality x. 
Ideally, of course, we would prefer to find superuniversal spaces with the same 

separation properties as the spaces they correspond to (e.g., a normal space which 

is super universal with respect to normal spaces), but, as we shall see, this will be 

impossible for almost anything stronger than 7"1 spaces. 

More precisely, suppose 92 is a class of topological structures, x is a cardinal, 

and S is a topological space. Then we define S to be x-superuniversal for 92 iff 

for every space ( T , 0 )  E 92 of cardinality less than x and every continuous in- 

jection f from a subset U _c T into S, there exists a continuous injection g which 

extends f and has domain T. 

We define A and B to be the subspaces of R with the inherited topology generated 

by the sets 

A = {l/n: nEN}  U{0}, and 

B=AU {2+l/n:n~N}U{2} 

and we prove: 

5.7 THEOREM. I f  92 is any class of topological spaces containing A and B, 

and S is any space which is N~-superuniversal for 92, then S is not Hausdorff. 

PROOF. Let f be any continuous injection from A into S, and let 0 be the 

continuous injection from B - {2) into S defined by 
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g(0)  = 0, 

g(1/n)=f(1/2n),  and 

g(2 + 1/n) =/ (1 / (2n + 1)). 

Then by the Nl-superuniversality of S, g can be extended to a countinuous in- 

jection from B into S. It is easily seen, however, that g(0) and g(1) cannot be 

separated by open sets in S. �9 

It should be noted that both A and B are both very simple spaces. They are 

countable, compact, metrizable, and have at most two accumulation points. 

We conclude this section with an application to graph theory. We note that the 

construction in Section 2 can be modified to obtain all kinds of ~c-superuniversal 

graphs (directed graphs, graphs in which points may be connected by many edges, 

graphs in which points may be connected to themselves, etc.) and that these new 

constructions will be far simpler than required for metric spaces because we need 

not worry about either consistency or superfluity. (For a treatment of the countable 

case and some generalization to higher cardinals, see [-8].) However, in many 

cases such ~-superuniversal graphs can be constructed directly from a ~:-super- 

universal space. For example, suppose we define a Michigan graph to be a pair 

(V, E) where V (the set of vertices) is some non-empty set and E (the set of edges) 

is any subset of ~ + ( V ) -  ~+(V). Thus a Michigan graph is one in which no 

vertex is connected to itself and any two vertices are connected by at most one 

edge. For any vertex v e V, we define the link of v by setting 

the colink of v to be 

In (v) = {u: (u, v} ~ E}, 

cln (v) = (u # v: u ~ V -  In (v)), 

and the degree and eodegree of v to be [In (v)] and ]cln (v)] respectively. Finally, 

we define the complement of (V, E) to be the graph (V, ~2+(V) - ( ~ +  (V)WE)). 

Using these, we mention without proof: 

5.8 THEOREM. I f  r~ is any infinite cardinal, then: 

1. I f  (V,E)  is any ~c-superuniversal Michigan graph, then each vertex has 

degree and codegree 2 ~, and the link and colink of each vertex are themselves 

~-superuniversal as is the complement of the graph. 

2. If (S,/~) is any ~-superuniversal metric space, then the graph 
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(S, {{u, v}: p(u, v) = 1}) 

is a ~c-superuniversal Michigan graph. �9 

5.9. COROLLARY I f  K is any regular infinite cardinal, then the smallest K- 

superuniversal Michigan graph has cardinality 2 ~. 

PROOF. The result follows immediately except that the case K = N o must be 

handled separately using either Uryshon's construction or the obvious modification 

of the constructions in Section 2. �9 

Many other theorems in Section 3 also generalize immediately to 1c-super- 

universal graphs, and 5.8.1 with slight modifications holds even if lc is finite, e.g., 

the links and colinks are 0c - 1)-superuniversal. We shall treat this entire subject 

in greater detail elsewhere. 

6. Open problems 

In tbis section we mention some open problems connected with our earlier 

sections. 

1. Can there exist a metric space of cardinality less than 2 ~ which is universal 

for all metric spaces of cardinality lc? In particular, does there always exist such a 

space of cardinality ic? 

2. Can superuniversal spaces be characterized by their topological properties? 

3. Does every (weakly) tc-superuniversal metric space contain a unitary subspace 

of cardinality 2~? 

4. Can every ~c-superuniversal metric space be decomposed into a disjoint 

union of lc-superuniversal subspaces? 

5. Does every r-superuniversal metric space contain a proper isometric 

subspace? 

6. If ~c is regular and 2 ~ # lc, then : 

1. Do there exist two ~c-superuniversal spaces of cardinality 2 ~ which 

are not only not isometric but also not homeomorphic? 

2. Do there exist admissible well orderings -~ and ~*  of~'~ such that 

N~ and N~*are not homeomorphic or even not isometric? 

3. Does each H~  contain a proper isometric subspace? 

4. Can each H~ "~ be decomposed into a disjoint union of 2 ~ or fewer lc- 

superuniversal subspaces? 
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7. For a given cardinal x, do there exist x-superuniversal spaces of all car- 

dinalities greater than 2~? In particular, if the generalized continuum hypothesis 

holds, then by using methods to construct the H~I, we can easily construct 

N~-superuniversal spaces of every uncountable cardinality less than No,. Is there 

one of cardinality exactly No,? 

8. If p is any point in any topological space, then there is a cardinal x, which 

we shall call the local density of p, such that some open neighborhood V of p 

has cardinality x and every other neighborhood of p contained in V also has 

points. Does there exist a x-superuniversal space with two points of differing 

local density? 

9. How can x-superuniversal spaces be combined to create "larger" such 

spaces? In particular, is the product of two such spaces x-superuniversal? 

10. If x is a strongly singular cardinal, then how large is the smallest x-super- 

universal metric space? In particular, if 2 ' ~  x, could there be such a space of  

cardinality 2~? 

11. Are there x-superuniversal spaces which are not weakly x-superuniversal? 

12. In 4.1.2, is the hypothesis cf( I s 1) => cf(x) really needed? 

13. Do 4.7 and 4.9 hold for the completions of arbitrary weakly x-super- 

universal spaces of cardinality 2~? 

14. Does 5.5 hold for all weakly x-superuniversal spaces? 

15. Is it consistent that there exist a superuniversal metric class which is not 

standard? If so: 

1. Need it contain a unitary class? 

2. Need it contain a "class" of disjoint superuniversal subclasses? 

3. Need it be decomposible into a union of superuniversal subclasses? 

4. Need it contain a standard superuniversal subclass? 

5. Need it satisfy 5.3.2? 
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